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ABSTRACT 
 
An automated geostationary METEOSAT satellite rainfall estimation technique (the 
Neural Rain Estimator) was developed and operationally applied over Italy and most of 
central-western Mediterranean to provide half hourly precipitation maps at 0.2 degrees 
resolution (about 12 x 23 km). The METEOSAT geostationary satellite long-wave 
infrared (IR) channel observations are the primary data source, since they provide the 
needed information about cloud top temperatures at a high frequency and fine spatial 
resolution. The moisture profiles of the environment, in which the precipitation systems 
develop, are generated by a Numerical Weather Prediction (NWP) model and taken into 
account due to their effect on the precipitation mechanisms. Neural network algorithms 
are then applied to connect the selected predictors to ground rainfall, as observed by a 
rain gauge network in Tuscany, Italy.  
The Neural Rain Estimator provides a relevant added value information with respect to 
the original METEOSAT imagery and may represent a routinely available tool for NWP 
model validation and numerical initialization. 



1 INTRODUCTION 
 
Several relevant reasons can be identified to develop, operate and maintain a 
service of high frequency satellite rainfall estimates over relatively large areas, 
especially if they involve marine and/or partly unmonitored covered regions. 
The most obvious reason is the production of quantitative information about 
current rainfall systems, directly utilizable by weather forecasters and 
operational hydrologists, providing value added information with respect to the 
(calibrated) Meteosat imagery (e.g. Levizzani et al., 1996; Vicente et al., 1998). 
Another relevant use of the satellite rainfall maps is the crop yield forecasting in 
marginal areas, e.g. the Sahel region. Furthermore, the accurate evaluation of 
the daily forest fire risk needs accurate knowledge of the previous dry days 
series (number of consecutive days with rainfall below a predefined threshold), 
often very difficult to obtain in real time over largely unmonitored areas (e.g. 
Maracchi et al., 1998). Rainfall climatology is often characterized by large 
uncertainties over unmonitored and marine areas; the evaluation of the water 
cycle trends over such regions, particularly relevant in the frame of the global 
climate change, and the validation/calibration of the seasonal forecasts are thus 
often unreliable (e.g. Grifoni et al., 1998). High frequency satellite rainfall 
estimates can cover these deficiencies. 
Other important uses of the high frequency rainfall maps over large areas are 
the validation and physical initialization of numerical weather prediction 
(NWP) models. Manobianco et al. (1993) have dynamically assimilated 
satellite-derived precipitation into a regional scale model by scaling the 
internally generated model profiles of latent heating for the simulation of 
tropical cyclones. Simulations showed that satellite precipitation does not 
induce noise during or after the assimilation period, forces the model to 
reproduce the magnitude and distribution of satellite rainfall patterns, and 
improves the simulated mean sea level pressure (MSLP) minima, frontal 
positions and the low-level vertical-motion patterns. The model retains 
information from the assimilation up to 8.5 hours after the end of the 
assimilation itself. A multivariate optimal interpolation analysis was applied by 
Turk et al. (1999) to the physical initialization of the Naval Operational Global 
Atmospheric Prediction System (NOGAPS) for the nowcasting of tropical 
precipitation. Added accuracy, better location and intensity of convective 
precipitation were found to lead to an improvement in the NOGAPS 
assimilation rain rates as verified against satellite observations. A significant 
improvement in the forecasts of precipitation patterns, MSLP fields, and 
geopotential height fields was found also in this extra-tropical case. 
Results generally indicate that a positive impact of non-conventional satellite 
input data, especially precipitation, into numerical weather prediction models 
exists, with a significant impact on the quantitative precipitation forecasts. 



Since the 1960s, several techniques were developed to estimate surface rainfall 
based on visible (VIS) and infrared (IR) imagery collected by geostationary 
satellites (Lovejoy et al., 1979; Barrett et al., 1986; Adler et al., 1988; Goodman 
et al., 1994). The relevance of IR imagery to the rainfall estimation is 
demonstrated by the evidence that intense thunderstorms are characterized by 
very cold cloud top temperatures and rapid changes in time and in space on the 
structure of the cloud top surface (Vicente et al., 1996). 
Techniques aimed at the estimation of rainfall over quite long time periods (e.g. 
monthly) and over large areas often use crude threshold methods, while random 
errors are reduced by the large integration scale itself. If conservation of good 
performances at short time aggregations is a strict requirement, finer analyses 
are needed. Hsu et al. (1997), for example, stress the seasonal and site specific 
dependence of the relationships between rainfall and cloud top brightness 
temperature.Several techniques have been developed with similar aims. Some 
of them are designed on a pixel by pixel basis, but generally employ only 
satellite information, are site and season specific, sometimes use adaptive 
calibration with radar and/or rain gauge observations. Inter-calibration of 
satellite estimates is in this respect, also a relevant topic. Levizzani et al. (1996) 
highlight the role of the Special Sensor Microwave / Imager (SSM/I) passive 
microwave sensor which performs a far more direct observation of cloud and 
rain structure and, if suitable algorithms are employed, rain maps derived from 
SSM/I may be used for the validation of the METEOSAT estimates. 
Unfortunately such technique cannot be used for flash flood warnings due to the 
low frequency of observation. In a recent work (Hsu et al., 1997), artificial 
neural networks were employed for off-line and adaptive calibration of satellite 
estimates (i.e., calibration of the rainfall estimates “on the fly” with the 
available updated rain gauge and radar observations). In the frame of this 
technique, the specific environmental conditions were not considered and good 
performances were obtained only activating the adaptive option, especially in 
the mid-latitudes. If no adaptive algorithms are used (either due to difficult data 
access, sparse or insufficient rain gauge or radar data), the assimilation of 
environmental conditions is needed. 
This work illustrates the architecture, data, performances and some derived 
applications of the automatic satellite rainfall estimation technique over the 
central-western Mediterranean. 
 
2 METHODOLOGY 
 
The goal of the Neural Rain Estimator is to diagnose the half hourly ground 
rainfall. The thermal infrared (IR) data provided by the geostationary satellite 
(Meteosat-6 and -7 for the Mediterranean area) observations each half hour are 
georeferentiated by means of an accurate orbital method and displayed on a 0.2° 
x 0.2° spatial resolution grid. Such data are then assimilated and processed on a 



pixel by pixel basis to identify some relevant features of the cloud top evolution 
and structure: brightness temperature, growth rate (in K per half hour), 
overshooting tops and sinking areas (after a finite difference analysis of the 
cloud top temperature through the local Hessian matrix) and horizontal gradient. 
Furthermore, a finer scale analysis has been provided, georeferentiating the 
whole scene at 0.04° x 0.04°, approximately the original METEOSAT spatial 
resolution. In this way, for every aggregated pixel – composed by a 5 x 5 
subpixel grid – standard deviation of brightness temperature is calculated and 
added to the selected cloud features. These features have been recognized as 
especially important to perform a screening of non-raining pixels (Woodley et 
al., 1972; Scofield, 1977; Adler et al., 1988). 
In the development of the Neural Rain Estimator, the METEOSAT infrared 
imagery is processed to identify several key features of the cloud systems. An 
important topic is the screening of cloudy and clear pixels: soil and sea surface 
temperatures are taken from an NWP model short term forecasts and the cloud 
threshold is taken 10 K below the surface temperature, with an absolute 
threshold of 273 K to consider only clouds with ice phase. Such threshold was 
selected after an accurate analysis of the solution of the radiative transfer 
equation for thermal infrared, represented by a relationship between brightness 
temperature at the top of the atmosphere and surface temperature (fig. 1). 
A neural network was first calibrated to screen the pixels and identify the rainy 
ones. A second network was calibrated to provide the rainfall depth over the 
desired time period (30 minutes), only over estimated rainy pixels. The input 
data for both networks were derived from the analysis of the satellite imagery 
and from meteorological model data. 
Since both neural networks get the input data from the three involved satellite 
scenes, it is necessary to screen all the situations that the networks may face. 
Most of the rainfall events (i.e. half an hour with rainfall over a specific pixel) 
occurred with cloudy conditions in all the three satellite scenes, and the cases 
with clear sky at least in the last two satellite scenes had zero rainfall in the last 
30 minutes. The other combinations involved a small number of cases and 
simple linear or exponential regressions were used to derive the probability of 
rainfall occurrence (screening of rainy pixels) and the quantitative rainfall 
estimation on the basis of the useful satellite and meteorological model data. 
The neural network belongs to the multi-layer perceptron (MLP) global neural 
network model (Lawrence et al., 1996) and uses the backpropagation tool. The 
backpropagation is an extremely effective learning tool that can be applied to a 
wide variety of problems; its related paradigms require supervised training. This 
means they need a set of training data where known solutions are supplied. 



 
Figure 1: Brightness temperature Tb at the top of atmosphere as a function of  Teff, 

atmospheric effective temperature, relative – for the atmospheric window channel - to a 
pressure level near to the surface. Different plots are for typical surface temperature 

values Ts. To be noted that the difference between  Tb and Ts is always lower than 10 K. 

 
3 DATA ANALYSIS 
 
Fig. 2 shows the area covered by both METEOSAT IR imagery and 
meteorological model data and the calibration area, which roughly corresponds 
to Tuscany, Italy. METEOSAT infrared, meteorological model and ground 
rainfall data were collected during more than twenty storm events occurred in 
1997 and 1998.Georeferentiation assured an accurate correspondence between 
satellite and ground data (errors less than the original METEOSAT infrared 
pixel size). 

 
Figure 2:  METEOSAT scene (B-format); insets represent the area covered by the 

meteorological model data (outer rectangle) and the calibration area (inner rectangle). 



Time series of quantities from the METEOSAT IR scenes on a pixel by pixel 
basis were produced, namely brightness temperatures and cloud top structures 
(gradient, convexity, concavity or saddle) of each series of three temporally 
consecutive scenes. Time series of simultaneous meteorological model derived 
data were also worked out. In particular was calculated the product of the 
precipitable water (PW) and relative humidity (RH), both computed in the layer 
surface to 500 hPA, divided by 1000, i.e. the PWRH factor. Both PW and RH 
are computed from the short time forecast atmospheric fields from a limited 
area model (DALAM model) nested into the global circulation model of the 
European Center for Medium range Weather Forecasts (ECMWF) and running 
over the southern Europe and Mediterranean basin (Buzzi, 1994; Perini et al., 
1995). The atmospheric fields are available at the time resolution of 3 hours and 
the quantities PW and RH are interpolated in time to get the mean value over 
the time interval between the first and the last of the three METEOSAT scenes 
(one hour). 
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Figure 3: (a) Relative frequency of the rainfall values in 30 minutes over the pixels 0.2° 
longitude by 0.2° latitude over the whole data set (1510 data); (b) same as (a), extended 

scale. 

Time series of thirty minutes cumulated rainfalls at the rain gauges were also 
collected and averaged over the selected pixels by means of simple arithmetic 
means from the data at the rain gauges. Fig. 3a e fig. 3b show in two different 
scales the relative frequency of the rainfall values over the whole data set, 



which consists of 1510 records of satellite infrared, meteorological model and 
rain gauge interpolated data; the rainfall data are apparently concentrated in the 
lower part of the range, which represents a limit to the calibration of the neural 
network over heavy rainfall events. 

 
Figure 4:  Relationship between rainfall in 30’ minutes (greater than 0.04 mm) and (a) 
cloud top temperature (b) cloud top brightness temperature standard deviation at the 

beginning of the thirty minutes rain period (2nd scene), (c) brightness temperature at the 
end of the rainy period. 
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Preliminary data analysis was aimed to the identification of clear relationships 
between cloud top features and ground rainfall. The relative frequency of rain 
occurrence was compared on a pixel by pixel basis to resampled cloud top 
temperature in the second METEOSAT IR scene, at the beginning of the thirty 
minutes rain period (Fig. 4.a). It was also compared to the cloud top brightness 
temperature standard deviation in the second (Fig. 4.b) and brightness 
temperature in the third scene, just at the end of the rainy period (Fig. 4.c). 
It is revealed a greater frequency of rainy events in the lowest cloud top 
temperature range (Fig.4.a) and a greater intensity in the same range (Fig. 4.b) 
and for higher standard deviation values (Fig. 4.c) or in presence of convective 
activity at smaller scale, in agreement with the results previously found by 
Vicente et al. (1996). 
 
4 RESULTS AND DISCUSSION 
 
The two neural networks employed in the development of the new methodology 
were designed separately both for the best performance on the independent test 
data sets and the stability. 
The best performance and stability of the network trained over the binary data 
set (rain / no rain) were obtained with the configuration set at one hidden layer 
with fifteen input nodes and twenty hidden nodes. The best performance and 
stability of the network trained over the rainfall amounts computed for the 
pixels where actually rainfall occurred were obtained with the configuration set 
at one hidden layers with ten input nodes and fourteen hidden nodes. This facts 
were established after several comprehensive trials using the same partition of 
the whole data set between the validation and the test sets. Furthermore, 
selection of the predictors for the neural network was established by means of 
the Wilcoxon two sample test (Wilks, 1995). 
The performances of the two neural networks were evaluated by means of the 
same statistical indices as the Auto-Estimator, but the target quantity is the 
rainfall (occurrence and amount) in 30 minutes. A lower limit for the half-
hourly rainfall was set to 0.04 mm, equal to the estimated a priori rain-gauge 
error – 0.2 mm – divided by five, the minimum number of raingauges in a 
resampled pixel.  Since the “screening” network was trained over binary target 
data (0 for no rainfall, 1 for rainfall), the outputs from the network were 
interpreted as probability of occurrence of the rainfall. A major problem was 
thus the choice of the output threshold which allowed the best couple of values 
of the probability of detection (POD) and false alarm ratio (FAR). A possible 
solution is to study the critical success index (CSI) and to get as threshold the 
probability of maximum CSI (fig. 5). Such criterion implies a probability 
threshold of  0.33 - an output from the network smaller than 0.33 means no 
rainfall, otherwise rainfall - corresponding to a POD of 64.0 % and a FAR of 
52.9 %. It should be noted that such choice, even if statistically well based, is 



somewhat arbitrary and can change in case of greater importance of false alarm 
with respect to the probability of detection or viceversa. 
To select the predictors of the network for the quantitative rain estimation, a 
forward stepwise multi-regression was provided to the whole data-set. Only 
variables that were able to improve the correlation coefficient have been 
retained. At the end of the training process, a squared correlation coefficient R2 

= 0.44 was obtained over the test set (fig. 6). 
Some more words may be spent about the underlying physics revealed after the 
identification of the best configurations of the two neural networks. 
 

Figure 5:  Probability of Detection (POD), False Alarm Ratio (FAR) and Critical 
Success Index (CSI) relative to rain detection (greater than 0.04 mm) as a function of 

neural network estimator normalized output. 
 

Figure 6:  Relationship between estimated and observed (greater then 0.04 mm) half-
hourly rain as resulted from the second neural network, for rainy data with binary 

threshold equal to 0.03. Resulting squared correlation R2 = 0.44. 
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The classes of input data which play the most relevant role in the screening of 
the rainy pixels are the cloud top temperature rates during the hourly time 
period between the first and the last satellite scene at the half hour time step. 
The occurrence of very cold cloud top temperatures at the beginning of the half 
hour is in most cases sufficient to diagnose rainfall in the following half hour. 
Four classes of input data play the most relevant role in the diagnose of the 
rainfall amount. In decreasing order of relevance, they are the standard 
deviation of the cloud top temperature and the cloud top temperature in the third 
satellite scene (at the end of the rainfall estimation period), the standard 
deviation of the cloud top temperature in the second satellite scene (at the 
beginning of the rainfall estimation period) and the cloud top temperature in the 
first satellite scene. 
From these results seems clear that if a cold cloud top temperature at the 
beginning of the last half hour is able to produce the raining event, the amount 
of rainfall depends on the concurrence of cold cloud top temperature in the 
whole hour and on the degree of subpixel temperature unhomogeneity, 
correlated to convective motions at smaller scale. 
 
5 SYSTEM ARCHITECTURE 
 
The aim of the entire operational system is to process the input satellite and 
meteorological model data for producing a set of files, containing real-time 
updated information on the rainfall quantities, in an easy-to-use interface. 
Specifically the system outputs are a set of GIF images for the rain quantity 
fallen in the last 0.5, 1, 3, 6, 12 and 24 hours, and an animation (in GIF format) 
of the last 6 hours with 30 minutes steps. All these output images are managed 
by an HTML page, containing also explicative information, and they are 
available on WEB (http://www.lamma.rete.toscana.it/previ/ita/rainprev.html). 
The system has overall to manage: 
� the input of a heterogeneous data set, 
� the checking phase on data availability and update state (when foreseen), 
� the real-time data processing flow (by means of a number of procedures and 

interface files), 
� the checking phase on each processing step success, 
� the output files, 
� the transferring operations to their final locations, 
� the checking phase on data refresh for the output interface, 
� its own refreshing and restarting in case of sudden interruption of the 

normal processing flow. 
 
The system structure is given in fig. 8: METEOSAT and meteorological data 
model arrive at the UNIX central unit (SERVER) by means of independent 
programs, as soon as they are available. Here a timed procedure (the main one) 



performs all the steps that, from the input data, produce the rainfall GIF images, 
and transfer such images on the WEB machine. On the WEB there is a second 
independent timed procedure, which checks the update state of the rainfall 
quantity images: when the images are older than a given time (due to any kind 
of problem in the system flow), they are substituted with an emergency image 
informing any WEB user of the update interruption; at the same time an e-mail 
message is sent to the system responsible. 
The main procedure running on the SERVER, is a C program that each half-
hour reads the machine time, then writes and runs a number of UNIX scripts for 
C shell. The scripts contain all the command steps for the data processing, with 
the appropriate names for the input and output files which depend on the time 
they refer. The advantage to have different scripts for each half-hour 
(corresponding to the update time of the METEOSAT and meteorological 
model data) is that such scripts can be run independently also a few hours after 
they  have been generated. In addition the scripts have some checking steps 
which make them not working if the input data are not all available or the 
scripts have already run with success. With this architecture the system each 5 
min. tries running the scripts produced in the last 12 hours without making the 
machine CPU working if not necessary, consequently it updates the output data 
no later than 5 min. after the input one are available, and it recovers any past 
computations (within 12 hours) accidentally interrupted, when all the necessary 
conditions are restored. 
 

 
Figure 7: Operational system architecture (see text for details). 

 



 
6 CONCLUSIONS 
 
New perspectives for several environmental fields are opened by the 
automatically estimate of rainfall from routinely available geosynchronous 
satellite infrared data and meteorological model data. In operational weather 
forecasting, natural applications are the early warnings for flood and flash flood 
events and local scale weather nowcasting. 
In applied meteorology, the early estimation of accumulated rainfall over fire 
hazardous areas and large marginal areas from routinely available information 
may be of critical relevance for operations and planning. Particularly important 
is the design of a suitable technique for the screening of rainy pixels: large 
errors in this phase may lead to unrealistic over- or under-estimations of the 
area coverage of a precipitation system. The neural network approach has 
revealed a considerable skill in this respect. 
The verification of the quantitative diagnosis of the rainfall may be affected by 
some random errors due to the use of rain gauge data, which leads to 
interpolation errors when the rainfall is evaluated over relatively large pixels (in 
this case 0.2  longitude by 0.2° latitude). Results are anyway encouraging, even 
if the performances are hard to evaluate due to the lack of data in the higher 
range of rainfall amounts. In particular, binary results are sensibly better than 
correspondent half-hourly results: this is very reasonable due to the fact that in a 
rainy day there are forty-eight possibility to detect rain, increasing in this way 
the overall probability of detection of the events. Better false alarm ratio for 
daily rain is instead explained by the fact that a non-rainy day is more 
effectively detected than a non-rainy half hour within a rainy event. 
Performances of the quantitative rain estimation depend only on the ability of 
the neural network to map the measured rainfall range. Results obtained in the 
different time intervals present the almost same accuracy: this fact is correlated 
to the low degree of dispersion of the obtained half-hourly estimates with 
respect to the measured ones. 
Tuscany, Italy, like many other areas in the Mediterranean countries, is prone to 
flash flood events due to the peculiar hydrography and orography. While 
extensive rain gauge networks are routinely operated during heavy rainfall 
events, few calibrated weather radar systems are installed and their data 
accessed in real time. Satellite rainfall estimates may thus represent a 
substantial improvement in this respect, as regards both to quantity and spatial 
structure of precipitation systems over medium-large size basins (300-400 Km2 
and up). 
Present hydrological models require distributed input data in terms of the main 
characteristics of the basin and fine spatial resolution in terms of rainfall data. 
The methodologies analyzed in this work may be of great importance for real 



time flash flood warnings, especially when they will be coupled with calibrated 
rainfall-runoff models. 
The next task is to calibrate the neural networks and verify the methodology 
over larger data sets; the need for rainfall amounts covering a wider range, 
especially at higher values, is particularly urgent. 
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